Symmetric bi-derivations and their generalizations on group algebras

نویسندگان

چکیده

Here, we investigate symmetric bi-derivations and their generalizations on L? 0 (G)*. For k ? N, show that if B:L?0(G)*x L?0(G)* is asymmetric bi-derivation such [B(m,m),mk] Z(L?0(G)*) for all m (G)*, then B the zero map. Furthermore, characterize generalized biderivations group algebras. We also prove any Jordan 0(G)* a bi-derivation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Symmetric Left Bi-Derivations in BCI-Algebras

The notion of symmetric left bi-derivation of a BCI-algebra X is introduced, and related properties are investigated. Some results on componentwise regular and d-regular symmetric left bi-derivations are obtained. Finally, characterizations of a p-semisimple BCI-algebra are explored, and it is proved that, in a p-semisimple BCI-algebra, F is a symmetric left bi-derivation if and only if it is a...

متن کامل

Generalizations of Derivations in BCI-Algebras

In the present paper we introduced the notion of (θ ,φ)-derivations of a BCI-algebra X . Some interesting results on inside (or outside) (θ ,φ)-derivations in BCI-algebras are discussed. It is shown that for any commutative BCI-algebra X , every inside (θ ,φ)derivation of X is isotone. Furthermore it is also proved that for any outside (θ ,φ)-derivation d(θ ,φ) of a BCI-algebra X , d(θ ,φ)(x) =...

متن کامل

On Hopf Algebras and Their Generalizations

We survey Hopf algebras and their generalizations. In particular, we compare and contrast three well-studied generalizations (quasi-Hopf algebras, weak Hopf algebras, and Hopf algebroids), and two newer ones (hopfish algebras and Hopf monads). Each of these notions was originally introduced for a specific purpose within a particular context; our discussion favors applicability to the theory of ...

متن کامل

$(odot, oplus)$-Derivations and $(ominus, odot)$-Derivations on $MV$-algebras

In this paper, we introduce the notions of $(odot, oplus)$-derivations and $(ominus, odot)$-derivations for $MV$-algebras and discuss some related results. We study the connection between these derivations on an $MV$-algebra $A$ and the derivations on its boolean center. We characterize the isotone $(odot, oplus)$-derivations and prove that $(ominus, odot)$-derivations are isotone. Finally we d...

متن کامل

Non Commutative Arens Algebras and Their Derivations

Given a von Neumann algebra M with a faithful normal semi-finite trace τ, we consider the non commutative Arens algebra Lω(M, τ) = ⋂ p≥1 Lp(M, τ) and the related algebras L2 (M, τ) = ⋂ p≥2 Lp(M, τ) and M + L2 (M, τ) which are proved to be complete metrizable locally convex *-algebras. The main purpose of the present paper is to prove that any derivation of the algebra M + L2 (M, τ) is inner and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2021

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2104233g